首页 >> 资讯

因式分解练习题100道_七年级因式分解练习题

2023-03-31 15:50:59来源:互联网

1、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。


(资料图)

2、当然可能要综合其他分法,且分组方法也不一定唯一。

3、 第4课 因式分解 〖知识点〗 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

4、 〖大纲要求〗 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

5、 〖考查重点与常见题型〗 考查因式分解能力,在中考试题中,因式分解出现的频率很高。

6、重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

7、习题类型以填空题为多,也有选择题和解答题。

8、 因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法 如多项式 其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用 写出结果. (3)十字相乘法 对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. §2.2提公因式法 教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法. 教学重点和难点: 重点:是让学生理解提公因式的意义与原理。

9、 难点:能确定多项式各项的公因式 关键:是让学生理解提公因式的意义与原理。

10、 2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢? (2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。

11、 答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。

12、 2.3运用公式法 教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数) 教学重点和难点: 重点:发展学生的逆向思维和推理能力 难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.因式分解的方法  因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

13、而在竞赛上,又有拆项和添项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,轮换对称法,剩余定理法等。

14、[编辑本段]基本方法  ⑴提公因式法  各项都含有的公共的因式叫做这个多项式各项的公因式。

15、  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

16、  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

17、  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

18、提出“-”号时,多项式的各项都要变号。

19、  例如:-am+bm+cm=-m(a-b-c);  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

20、  注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式  ⑵公式法  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

21、  平方差公式:a^2-b^2=(a+b)(a-b);  完全平方公式:a^2±2ab+b^2=(a±b)^2;  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

22、  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);   立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.1.因式分解abc+ab-4a=a(bc+b-4) 2.因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) 14.16x2-81=(4x+9)(4x-9) 15.9x2-30x+25=(3x-5)^2 16.x2-7x-30=(x-10)(x+3) 17.3ax2-6ax=3ax(x-2) 18.x(x+2)-x=x(x+1) 19.x2-4x-ax+4a=(x-4)(x-a) 20.25x2-49=(5x-9)(5x+9) 21.36x2-60x+25=(6x-5)^2 22.4x2+12x+9=(2x+3)^2 23.x2-9x+18=(x-3)(x-6) 24.2x2-5x-3=(x-3)(2x+1) 25.12x2-50x+8=2(6x-1)(x-4) 26.3x2-6x=3x(x-2) 27.49x2-25=(7x+5)(7x-5) 28.6x2-13x+5=(2x-1)(3x-5) 29.x2+2-3x=(x-1)(x-2) 30.12x2-23x-24=(3x-8)(4x+3) 31.(x+6)(x-6)-(x-6)=(x-6)(x+5) 32.3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) 33.9x2+42x+49=(3x+7)^2 。

23、34..因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2)。

本文就为大家分享到这里,希望小伙伴们会喜欢。

关键词:

相关新闻